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ABSTRACT

A Bingham flow is described by a so-called variational inequality of evolution
type which contains the Navier Stokes equations as a particular case. These
variational inequalities were introduced and studied by Duvaut and the
author. We recall here a number of known resuits for these “Bingham inequali-
ties’” and initiate the study of the behaviour of the solution when the “viscosity”
tends to zero.

1. Introduction

Bingham fluids are non-Newtonian fluids whose law of behaviour is given by
Duvaut and Lions [ 6, Chap. 6]. The law depends on two (main) parameters: the
viscosity u (> 0) and the plasticity yield g > 0; when g = 0 one recovers the usual
viscous incompressible fluids,leading to Navier Stokes equations. When g is >0,
the speed u of the flow can be characterized by a variational inequality of
evolution, which has been introduced and studied by Duvaut and Lions [6],[7]-
We recall in Section 2 below the main known results for this variational inequal-
ity (which contains the Navier Stokes equations for g =0).

We consider in Section 3 the problem of the behaviour of the solution (which
is known to exist and to be unique if the space dimension equals 2) when the
viscosity p tends to zero. We give a result which is a partial extension to the case
g > 0" of a result of Yudovich [40] known for the case “g =0"".

In Section 4 we consider, following Duvaut and Lions [8], a case when the
viscosity u depends on the temperature.

We give in Section 5 a number of remarks on related questions and open

problems.
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2. Variational Bingham inequalities

Let Q be a bounded open set of R®, n = 2 or 3%, with smooth boundary I. Let
u = u(x,t) denote the speed of the flow. We introduce the following notations:

{0 Ov;
D;(v) = %(a}‘ 5)?,)
Dy(v) = % Dy(v) D;(v),™

a(v,w) = 2 fD,-j(v)Dij(w)dx,
Q

ov;
u, —Iw,dx
[ J s

[y} X;

jo) = 2 jﬂ Dyy(0)tdx.

b(u,v,w)

Denote by ¥~ the space
7 = {¢| $€(@Q)", Div ¢ =0}

where 2(Q) = C3(Q) = space of (real valued) C* functions defined in Q with
compact support.

Let H*(Q) be the usual Sobolev space of order s (= 0), s being an integer or not.
We define next

2.1 V, = closure of ¥ in (H°(Q))".

We set, in particular,

(2.2) V,=V, V,=H.

We denote by || || (resp.| |, resp. | | the norm in ¥ (resp. in H, resp. in V),
and by ( , ) the scalar product in H

The problem of Bingham flows can now be stated in its strong form in the
following manner: We are looking for a function

t - u(t) from [0, T] — V such that

( a—'a‘f—’) b~ u(t)) + patu(), v — u(®)) + bGu(t), u(®), v — u(t))
A\

+ gj(v) — gju(®) = (f(#), v —u(¥), YoeV

T We note that one has an existence theorem with arbitrary #; cf. Duvaut and Lions [6].
Tt We follow the standard summation convention.
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and

(2.4) u(0) = ugy, u, given in H.

In (2.3), f is given satisfying

(2.5) fe 120, T; V').T

Inequalities (2.3) are called variational Bingham inequalities.

REMARK 2.1. In (2.3), the term b(u(t), u(t), u(t)) =0, but it is kept for the
symmetry of the formula.

REMARK 2.2. When g =0, (2.3) reduces to the Navier Stokes equations in
the usual variational form (cf. J. Leray [21], [22]; E. Hopf [ 14]) namely

( ou(t)

(2.6) ET

. v) + pa(u(t)),v) + b(u(t),u(r),v) = (f(1),v), YoeV.

The problem (2.3) (2.4) is solved in a satisfying manner when n = 2, One has

THEOREM 2.1. We suppose that n =2 and that f and u, are given satisfying
(2.5) (2.4). Then there exists a unique function u which satisfies

Q2.7 uel?(0,7; V),
(2.8) —g—l;eLZ(O. T; V)
and which satisfies (2.3).

RemArk 2.3. It follows from (2.7) (2.8) that the function u a.e. equals a
continuous function t — u(t) from [0, 7] — H.

REMARK 2.4. When g = 0, Theorem 2.1 gives a result of Lions and Prodi [27].
One can also give regularity theoremsin t which give, as particular cases when
g = 0, results of Ladyzenskaya [18].
REMARK 2.5. The solution u given in Theorem 2.1 depends on y and g:
u=1u,,.
For fixed u > 0,u,, ,converges (in the topology which corresponds to (2.7) (2.8))
to u, = usual solution of Navier Stokes equations when g— 0. The case when

t We identify H to its dual; ¥, denotes the dual of ¥,; If s > 1 we have then V.eVeH
cV <V
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g — +ooisalso of interest; we shall give some indications on this case in Remark 5
hereafter.

The problem of the behaviour of u, , when x—0 (g >0) is considered in
Section 3 below.

We now return to the problem (2.3), when n = 3. We need in this case the
notion of weak solution of the Bingham inequalities.
Introduce the space W defined by

0
(2.9) W= {u[veLZ(o,T; V3/2)s —aTUeLZ(O,T; H),v(0) =0 }
and to simplify the exposition assume that

(2.10) g = 0.

We remark that if u satisfies (2.3) (2.4), then, V ve W we have

f [(%’U - u) + pa(u,v —u) + b(u,u,v — u) + gi(v) — gj(w)
1) *°

— (f,v—u)] dt = 0.

We eliminate in (2.11) the term b(u,u,u) (which is zero for strong solutions) and
we shall say that u is a weak solution if

j:{(%’v — u) + pa(u,v — u) + b(u,u,v) + gj(v) — gj(u)

(2.12)
—(f,v—u)]dtgo YveW.

We have

THEOREM 2.2. Assume that n =3, f is given satisfying (2.5) and (2.10) holds
true. Then there exists a function u which satisfies

2.13) uel?(0,T; VyNL*0,T; H),
(2.14) % el” (0,T; Vy;)

and which satisfies (2.12).

REMARK 2.6. The uniqueness in Theorem 2.2 is an open problem; actually
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the situation is completely analogous to the one of the usual Navier Stokes
equations (although the methods of proof are quite different).

REMARK 2.7. We refer to Duvaut and Lions [6] for the stationary case.

3. A remark on the problem when the viscosity tends to zero

We consider the case n = 2 and we suppose that Q is simply connected. Coordi-
nates are denoted by {x;,x,} or {x,y}.
Introduce the stream function  which is uniquely defined by

o _ . W _
(3.1 x V=T T @—‘//y—%
and
3.2) Yy=0onT.
If, as in Section 2, u; =u, =0 on I, then
(3.3) %/; =0 on T,

In what follows, we shall consider another boundary condition rather than (3.3),
namely,
(3.4 Ay =0 onT.

REMARK 3.1. A similar change is made, in the case g = 0, by Yudovich [40].
We now transform the variational inequality (2.3) in terms of . To every test
function v we associate ¢ uniquely defined by

(3.9 G.=—10y, ¢,=v;, ¢=0 onT.
We check the following formulas:
(3.6) Dpy(v) = iy + 3 (hax — )7,
3.7 a(u,v) = LY, ) = (Ay,A¢) !

{ 6 = £@) =2 | M@pdxay,
¢ M@) = b+ (e — 4,
(39 b(u,u,v) = By, ¥, $)

I

[ w0 - vdvs s

T We set (f, g) = [q fedx dy.
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(3.10) (,0) = oY §) = f Lo + Vb, ] dx dy,
(3.11) (1) = (), F = fy = 5Fr

Variational inequality (2.3) becomes now

(oS 0= ) +ntWd =)+ B0 = )
|
(3.12) | + 8 S-S zF - Vo

Lsuch that =0, A¢ =0OonT.

The new problem we consider is now: to find a function  satisfying the boundary
conditions (3.2) (3.4), the variational inequality (3.12) and the initial conditions:

(3.13) ¥|i=0=0."

REMARK 3.2. Since we have replaced (3.3) by (3.4) we cannot apply Theorem
3.1 to obtain the existence and uniqueness of a solution yy. We shall prove:

THEOREM 3.1.  Assume that
(3.19) Q=7o,d[?
and that f,, f, are given satisfying
(3.15) f1s f2y FeI}(Q), Q=Qx]0,T[.

For u>0 fixed, there exists a unique function  =y* which satisfies

(3.16) Y e L2(0, T; HYQ)) NEX0,T; HX(Q)), 1t
(3.17) Ay e L°(0, T; I2(Q)) N I2(0, T; Hy(Q)),
(3.18 (- A0, T; (2@ N HYQ)),

and (3.12) (3.13).

Moreover, as p— 0, there exists a constant C which does not depend on u, such
that

(3.19) v le.zimian + | AY# ]| o0, 7; L2y

0
+ ”—af(— AYM) | 20,7 ey mbeoryy S C-

T We take “0” to simplify the exposition.
Tt H3() denotes the closure of 2 (Q) in H1(..)
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We can then let u tend to zero, to obtain

THEOREM 3.2. Under the hypothesis of Theorem 3.1, we can extract a
subsequence, still denoted by Y*, of solutions such that when y— 0 one has

(3.20)  y* —> y in L® (0, T; H(Q)) weak-star,
(3.21)  Ay* — Ay in L (0, T; [*(Q)) weak-star,

(3.22) -(%(_ AY¥) - _6‘37(_ AY) in I2(0, Ty(H*(Q) N HA(Q))') weakly

where \y is a solution of the variational inequality

(a0(S 6 = ) + B0 8) + 8@ — 8D 2 Fd = V)
(3.23) [
Vo such that g =0o0nT

and satisfies
(3.24) ¥|iz0=0.
ProOF OF THEOREM 3.1. Existence.

We firstly regularize #(¢); we define, for ¢ >0

(3.25) S =2 fﬂ M($® dxdy

where M(¢) is defined in (3.8). Then the functional ¢ — ¢ (¢) is differentiable
and we have

(F.(),9)
(3.26)

= 2l +¢) fﬂM(np)“'“”(wxyqsx, F 3 W — U)o — 1)) dixdy.

We then ‘‘approximate’” (3.12) by the nonlinear P.D.E.
(B27)  age ) + ut (e d) + B d) + 8(F (YD), ) = (F, $)

and

(328) l//a(o) =0

(we have denoted ay/,/dt by ).

The solution of (3.27) is constructed by the Galerkin method with a “‘special
basis’’ as in Lions [23] (for the case g = 0). We consider the eigen functions w,,:
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(3.29) - Aw,, = 4, W,., w,=0onT

and we apply the Galerkin method with the w, basis, i.e., we define y,, =
approximate solution of (3.27) (3.28) in the following manner:

Y em(t) €[Wy, -+, w,,] = space spanned by w,, -, w,.;

oW oms @) + HA W oms D) + B ams ¥ ems D) + 8(F s o) §)
= (F,9)  Voelw, - w,],

Yem(0) =0.

We are now going to obtain estimates on ¥,,, which do not depend on ¢ and m

(3.30)

and we shall see how these estimates depend on p.

Estimates (I). The first estimates are straightforward; we replace in (3.30)

¢ by ,,; we observe that f(¢,¢d,¢) =0 and that ((F(¢),d) = 0; we obtain
therefore:

B3 aWamben) + VIS Gemn) S Y.

Hence we easily deduce that
(3.32) [ em ”Loo(o T H @) T VI A m 20,7 12y S C . 1T
Estimates (I1I). Since w,, satisfies (3.29), it follows from (3.30) that
AW om> = AW)) + 1l (Y ey = AW)) + BW s Y ems — AW))
+ 8 Wam)s — Aw)) = (F, — Aw)).

Hence we obtain

(333 W m = M) 1SV s~ ) + BV s = A )

+ g(I W em)> — Aem) = (F, — AY,).

But we remark that

B(qu ¢, - Ad’)

(3.34) b L [¢‘ aiy("‘ﬁ)2 - ¢ % (A¢)2] dxdy

3 f [¢.cos(n,y) — ¢,cos(n,x)] (Ap)?dI' =0,
r
Since the tangential derivative of ¢ is zero on I,

T We obtain simultaneously the existence in (0,T’) of a solution of (3.30).

Tt The constants C do not depend on &, m, z.
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Let us consider for a moment

LemMMA 3.1. For every smooth function ¢ such that ¢ = A¢p =0 on T we have

(3.35) (7)), — Ap) = 0.
Then (3.33) gives

d
(3.36) 3 = | A + 236(AY s A ) S (F, = AYp)'
Hence we easily obtain'

(3.37) | Wam |l Loncommzcan + VA A 20730 < C-

ProoF OF LEMMA 3.1.  We have, setting M(y) = M:
(Fd), — Ad)

A+ L Mu-“ﬂ[zqsxy(—AqsxyH %(qsxx—qbyy))(—A(qsn—¢yy)>] dxdy

(3.38) _a “)fr -2 [2 %(_ 6%)

on

+ 1= y) (~ 5B qsyy))] ir

+ (1 +8)X,
where
x-| @M,y + M),
Q
(339) + % (M(e_l)/2(¢xx - ¢yy))x(¢xxx - ¢yyy)
F ARG~ 60 (B — ¢m)] dx dy.
We obtain

Y1f|2 = faf? dxdy.

™ We use the fact that H ¢ ”Hz(g) <c |A¢| if ¢=0onT.
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N f M(a 1)/2| (‘ "2-"3’ : x)’)’) 71 ((¢xx ¢yy)x) 1 12((¢xx yy)y) l y
Q ¢ dx d
f (M(E v ) ) ‘ XY 21 (’ xx ¢yy) (¢xx ¢yy).x dx dy
Q ,‘ \

+ fﬂ (M=) [2¢xy¢>xyy + 3 (hrx — Dyy) (s — ¢W)y] dx dy

1 2002 + 00 + 4 ns = 60 43 (B 8,7 dx

+ L [(M““”“"),,M,, + (M~ '>/2)yMy] dxdy

% f MEI2(M?2 + M2)dx dy +f ME=2y dxdy
Q Q

where

Y=M [2(¢xxy + d).vzcyy) + %((¢xx - ¢yy)x)2 + %((d’xx - ¢yy)y2]

-1 [Mi + Mf].
If we set
¢xx - ¢yy =0
we check that
Y= % (¢xy Ox — ¢xxya)2 + %(d)xyay - ¢xyyo-)2
hence Y = 0, so that X = 0 and therefore (3.38) gives

(3.40) (FUP), ~Ap)Z — (1 +) [ Mz gr
v
where ; ]
Z= 2¢xy _a;l‘¢xy+%a_a;0'

)
= ‘a_n l:¢:2cy + %62]

0
S |85 Bty + 1007).
But since A¢ =0 on T, it follows that 8/dn (A¢)?> = 0 on I so that

2= 5[ = buhy| on T
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But one easily checks that since ¢ = 0, A¢ = 0 on I'; then on each part of I' = 9Q,
Q = TJo,d[?, one has z = 0; hence (3.40) gives (3.35).

Estimate (II1). We now show that

(3.41) H = (=AY )

L2(0,T; (HZ(Q)QHD(Q))) <C

It foHows from (3.30) that
ao(lp'em, ¢) = (F, ¢) - ﬂ.ﬁ?](l//sm, ¢) - p(‘pem’ ‘pxm’ ¢)

~ (I (Vem) $)

and it will suffice to show that each term in the right hand side of (3.42) is
<| ¢ |uz@* (an %0, T) functicn).

(3.42)

This is obvious for the term (F, ¢). We observe next that

1AW om, )| S 1| A | | 2G5
hence the result follows by virtue of (3.37). We then estimate

[ (¥ ) b (52 0) x|

0 0
= ,A!//rzml 3}7—‘//‘"" LY(Q) a—f L4
=< CIAlﬁgm |2 “¢||H2(n) < (by virtue of (3.37))
< €| ¢]axcar

which gives the desired estimate for f (i, ¥ > ¢). Finally we observe that
[(F:).9) < C L M) (0% + 1 (Pux — yy) 21 dxdy

s ¢ ([ Mwaxdy )* 191w

Hence the result follows, again using (3.37). This completes the proof of (3.41).

We now pass to the limit in m and in e. By virtue of the preceding estimates,
we can extract a subsequence, still denoted by ., such that

Wem = ¥ in L2(0,T; H2(Q) N H(Q)) weak star,
(3.43) | Ay,,, = Ay in I*(0, T; Hy(Q)) weakly,

(M) > (= AY) in 0, T (HA(@) ( HY@)) weakly.
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It follows from (3.30) that

aO(‘//:zm’ ¢ - l//tzm) + ”d(l//em’(b - 'I’em) + ﬂ (wem’ ll/em3 ¢)
(3.44) + 85D — 8 (Vem) — (F, 0 = .0)

= g[fa(qs) - fe(l//em) - (fe(¢em)’¢ - wam)] g 0
(using the convexity of ¢ — 7 .(¢4)).

Therefore,

fO [(‘%(_ A‘/’am)’(ﬁ ) + ;ud(‘ibzm’ (xi)) + }8(4/;",5 wams ¢)
+ D)~ Fob— wm)] dat
T
345 2 f [aowzm, Von) + 18 o o) + gfz(wm>] dat
T
186 (D) Y en(T)) + 1 f L Yoo

T
Ty f St

We use a compactness argument (as in Lions [23], Chap 1, Sec. 6.9) to prove that

T T
j Bl st ) dt f B, B dt;
(1) 0

the right hand side of (3.45) is lower semi-continuous, so that we obtain in the limit

f OT[(“%(‘ A'P)’fﬁ —0) + ul (B, b~ ¥) + B Y ) + 8.5 (D) — gf(tﬁ)] dt

T
48 5 f (F, ¢ —p)dt.

From this, one only obtains that i satisfies (3.23); this completes the proof of
the “‘existence part’ in Theorem 3.1.

Proor or THEOREM 3.1. Uniqueness.

Let ¢ and y* be two solutions of (3.12) (3.13) which satisfy (3.16) (3.17) (3.18).
Taking ¢ = * (resp. ¢ = ¥} in the inequality for i (resp y*)and setting 6 = y —y*
we obtain, after adding the results:

— ao(0',0) — uet(0,60) ~ B(Y,¥,0) + B(Y*,y*,0) 2 0.

Hence
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d
116 [ + 1| A0 < ~ B, 0,0)

and we deduce that § = 0 as in the proof of Theorem 6.10 of Lions [23], Chap. 1.

PrOOF OF THEOREM 3.2. We denote by y* the solutions obtained in Theorem
3.1. By virtue of the estimates (3.19), we can extract a subsequence, still denoted
by y*, such that one has (3.20) (3.21) (3.22). We also notice that (3.37) implies that

(3.47) /i AY* remains in a bounded set of I?(0, T; Hy(Q)).

Since — A is an isomorphism from H?(Q) N H}(Q) into I*(Q), it follows by
transposition that it is also an isomorphism from I*(Q) into (H*(Q) N H*(Q))’ so
that (3.22) is equivalent to

n
(3.48) a—g/t— - %ltk in I2(0, T; [*(Q)) weakly.

It follows from (3.12) that if we choose ¢ = ¢ () to be a smooth function satisfying
¢ =0o0nT, we have

fT [ (a”b ¢ - W‘)ﬂ&f(v/“q& V) + B YA )

(3.49)
+ g5 — g fW") — (F,¢ —y")]dt 2 0.
By virtue of (3.47), [q uf (Y*,¢ — y*) dt— 0 and by (3.21),

T T
lower lim, J FWHdt gf F(de. Using (3.21) (3.22)
0] 0

we see that

tower lim. f ao( ,w) > f:ao(%,w) dz=f: (—;?(—Azﬁ),zf/)dt
s0 that (3.49) implies
(3.50) f [60(3%-0 = ¥) + 8000 + £7) — 5 = (.6 — )| s 20

provided we check that

T T
(3.51) f B Uk @) dt — fo B, ) dt.
We have to verify that
(3.52) f w‘;Aw"«ﬁde»f VAV b, dO.
Q Q
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We can take ¢ as smooth as we please (by a density argument), so that
Ad* ¢, - Ay ¢, in, say, [2(Q) weakly. By (3.21) and (3.48), we have
yh =¥, inI*0,T; H'(Q)) weakly,
oYy — 8y, in 20, T; H'(Q)) weakly.
ot ot
Hence, by using a compactness result (cf. Lions [247]), it follows that
Y4 - ¥, in L*(Q) strongly

so that (3.52) and (3.51) follow. Thus (3.50) is proved and (3.23) follows by a
standard argument.

REMARK 3.3. The uniqueness in Theorem 3.2 is an open problem, for g > 0.
In case g =0, uniqueness is known. Cf. Yudovich [40], Lions [23].

REMARK 3.4. It would be interesting to extend to the present situation results
obtained for the case g = 0 by D. G. Ebin and J. Marsden [9], T. Kato [17] and
H. S. G. Swann [38]. We believe the results to be valid for the case g > 0 but the
“‘j-terms’’ lead to serious technical difficulties.

4, Heat transfer in a Bingham fluid

Let us consider now, following Duvaut and Lions [8], a situation where the
viscosity p depends on the temperature 6 of the fluid.
Let A — u(4) be a continuous function defined on w, satisfying

4.1 O<po=u(A)sp, <o VieR.

We set now

(42) a(®3 1.0 =2 [ (0)Dy(6) D) d
Q

and we introduce
(4.3 F(8,u) = 2(2u(6) Dy, (w) + g(Dy(w))).

Then the speed of the flow u and the temperature 6 of the fluid are shown to
satisfy to

Y In case u (6) = u, a (0; u, v) = u a (u, v) with the notations of Sections 2 and 3.
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[(%“—,v—u) +a(0; 0 — ) + by, — ) + B0) — GO Z (0 ~ )
t
4.4) VoeV,
a0 ..
(4.5) —a———kA0=cF(0,u) +f, k>0,

where fis given in Q x ]0, T[, with the boundary conditions
(4.6) u=0onT"

4.7) k%;—+q9=00n1", g=0

and with the initial conditions
(4.8) u(x,0) = uy(x), 6(x,0) = 04(x),(uy, 0, given).
The following theorem is proved in [8]:
THEOREM 4.1. We assume that the space dimension n =2, and that
4.9) fe20,T; V'), fe [MQ), Q =Qx]0,T[,
(4.10) u,€ H, 0, L1(Q).

Then there exists u,0, a solution of (4.5)---(4.8) such that
ou
4.11) uel?(0,T;V), —aTGLZ(O,T; V",

(4.12) 0 e I4(Q), where 1 < < 3/2.

REMARK 4.1. The solution 8 in I# (Q) of (4.5) (4.7) (4.8) is meant in a weak
sense, after integration by parts.

ReMARK 4.2. The uniqueness in Theorem 4.1 is an open question. If n = 3, the
existence appears also to be an open question.

5. Remarks and problems

5.1 The case g— + . Let u, be the solution given by Theorem 2.1, where u
is fixed > 0. Let us suppose that

5.1) Uy =0
and that

(5.2) feE2(0,T; H).

 This condition is satisfied when « (t) € V.
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Then, using in particular, an inequality of L. Nirenberg (private communication)
extended by M. J. Strauss [37], one shows (cf. [6], Chap. 6, Se:. 5) that

(5.3) u,=0 for g=g.
We call “rigid domain”’ the region of the flow where
5.4 Dyu)=0  Vi,j.

It seems natural that this rigid domain increases with g; this conjecture, made in
[6], is confirmed by numerical experiments (cf. M. Fortin [12], D. Bégis [2]).

5.2. Multipliers. One can state the variational inequalities met in this paper
in terms of equalities using Lagrange multipliers (not uniquely defined).

We refer to Duvaut and Lions [6] [8] for these equalities.

5.3. Regularity. In problems of variational inequalities, there is, in general,
a “‘regularity yield” (counter example of Shamir [34], Brézis and Stampacchia
[5] and Brézis [4]). Is it possible to prove regularity theorems analogous to those
of Brézis [4] for the variational inequality “‘without b term”’, i.e.,

65.5) (G0 —u)+mato -0+ i) - W2 Uo=1)  Voe??
Itis very likely that one cannot extend all results known in the case g = 0, such as
those of Serrin [33].

5.4. Letussupposethatthe right hand side fand the initial data u, are random
functions in Theorem 2.2. (i.e., when space dimension equals 3). Then R, Temam
[39] has proved that one can find a measurable family of solutions. A general
problem which arises in this context is then: Is it possible to estimate the proba-
bility of having uniqueness?

5.5. For the extension of the theory of C. Foias and G. Prodi [10], [11]
(which is established for the case g=0) to the case g > 0, we refer to Pop Ciora-
nescu [31].

5.6. It would be interesting to extend to the Bingham flows the results of
stability known for the Navier Stokes equations (cf. G. Iooss [15], O. A.
Ladyzenskaya [19] and D. Sattinger [32]).

5.7. One can extend to the case g > 0 some of the results of Simonenko [35]
[36] relative to the case ““g = 0",

5.8. For the study of almost periodic solutions of Bingham’s variational



Vol. 13, 1972 NONLINEAR EVOLUTION PROBLEMS 17

inequalities, we refer to Biroli [3] where some extensions of results of Amerio-
Prouse [1] are given.

5.9. One meets (G. Duvaut, private communication) free boundary problems
for Bingham’s fluids; they seem to lead to open problems.

5.10. For Bingham’s flows in non-cylindrical domains, we refer to B. Margolis
[28] who gives extensions of results for Navier Stokes equations in non-cylindrical
domains obtained in H. Fujita and N. Sauer [13], Lions [25], H. Morimoto [30]
(where one studies the existence of periodical solutions).

5.11. Other models, introduced in the case g =0 by Ladyzenskaya [20],
S. Kaniel [16], Lions [26], are solved for the case g > 0 in B. Margolis [29].
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