
REMARKS ON SOME N O N L I N E A R  

EVOLUTION PROBLEMS ARISING IN 

BINGHAM FLOWS 

BY 

J. L. LIONS 

ABSTRACT 

A Bingham flow is described by a so-called variational inequality of evolution 
type which contains the Navier Stokes equations as a particular case. These 
variational inequalities were introduced and studied by Duvaut and the 
author. We recall here a number of known results for these "Bingham inequali- 
ties" and initiate the study of the behaviour of the solution when the "viscosity" 
tends to zero. 

1. Introduction 

Bingham fluids are non-Newtonian fluids whose law of behaviour is given by 

Duvaut  and Lions [6, Chap. 63. The law depends on two (main) parameters:  the 

viscosity p ( >  0) a n d t h e  plasticity yield g > 0; when g = 0 one recovers the usual 

viscous incompressible fluids,leading to Navier  Stokes equations. When g is > 0, 

the speed u of  the flow can be characterized by a variational inequality of 

evolution, which has been introduced and studied by Duvaut  and Lions [6], [7].  

We recall in Section 2 below the main known results for this variational inequal- 

ity (which contains the Navier  Stokes equations for g = 0). 

We consider in Section 3 the problem of the behaviour of  the solution (which 

is known to exist and to be unique if the space dimension equals 2) when the 

viscosity p tends to zero. We give a result which is a partial extension to the case 

" g  > 0"  of  a result of  Yudovich [403 known for the case " g  -- 0".  

In  Section 4 we consider, following Duvaut  and Lions [8], a case when the 

viscosity # depends on the temperature. 

We give in Section 5 a number  of  remarks on related questions and open 

problems. 
155 
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2. Variational Bingham inequalities 

Let fl  be a bounded open set of R", n = 2 or 3 t, with smooth boundary F. Let  

u = u(x, t) denote the speed of the flow. We introduce the following notations: 

Dij(v) = ½ k-~xi + dx, ] 

Du(v ) = ½ Dij(v)Dsj(V),+t 

w) = 2 fo Dij(v) Do(w ) dx, a(v, 

f a ~v~ b(u,v,  w) = u , -~x iWjdx ,  

j (v)  = 2 ja  O~1(v)~dx. 

Denote by ~/z the space 

= {¢] ¢ e (~(f~))", Div ¢ = O} 

where ~(f~) = C~(f~) = space of  (real valued) C ~ functions defined in fl  with 

compact support. 

Let H~(f~) be the usual Sobolev space of order s (>= 0), s being an integer or not. 

We define next 

V~ = closure of V in (HS(ll)) ". (2.1) 

We set, in particular, 

(2.2) VI = V, Vo = H. 

We denote by tt II (resp. [ 1, resp. t1 ]Is) the norm in V (resp. in H, resp. in V~), 

and by ( , ) the scalar product in H 

The problem of Bingham flows can now be stated in its strong form in the 

following manner: We are looking for a function 

t ~ u(t) from [0, 7"] ~ V such that 

dt ' v - u(t) + pa(u(t), v - u(t)) + b(u(t), u(t), v - u(t)) 
(2.3) 

+ gj(v) - gj(u(t))  >= ( f ( t ) ,  v - u(t)), Vv e V 

t We note that one has an existence theorem with arbitrary n; cf. Duvaut and Lions [6]. 
tt We follow the standard summation convention. 



(2.7) 

(2.8) 

and which satisfies (2.3). 
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and 

(2.4) u(0) = Uo, Uo given in H. 

In (2.3), f is given satisfying 

(2.5) f ~  L2(0, T; V').* 

Inequalities (2.3) are called variational Bingham inequalities. 

REMARK 2.1. In (2.3), the term b(u(t), u(t), u(t)) = 0, but it is kept for the 

symmetry of the formula. 

REMARK 2.2. When g = 0, (2.3) reduces to the Navier Stokes equations in 

the usual variational form (cf. J. Leray [21], [22] ; E. Hopf [14]) namely 

(2.6) ( ~ t t ) , v )  + pa(u(t)) ,v)  + b (u ( t ) ,u ( t ) , v )=( f ( t ) , v ) ,  Vv~ l/. 

The problem (2.3) (2.4) is solved in a satisfying manner when n = 2. One has 

THEOREM 2.1. We suppose that n = 2 and that f and u o are given satisfying 

(2.5) (2.4). Then there exists a unique function u which satisfies 

u~L2(O,T ; V) ,  

~-~eL2(0. T;  V') 

REMARK 2.3. I t  follows from (2.7) (2.8) that the function u a.e. equals a 

continuous function t ~ u(t) from [0, T] -~ H. 

REMARK 2.4. When g = 0,Theorem 2.1 gives a result of Lions and Prodi [27]. 

One can also give regularity theoremsin t which give, as particular cases when 

g = 0, results of Ladyzenskaya [18]. 

REMARK 2.5. The solution u given in Theorem 2.1 depends on / t  and g: 

U = U ~ ,  0 . 

For fixed p > 0, uu, ~ converges (in the topology which corresponds to (2.7) (2.8)) 

to u u = usual solution of Navier Stokes equations when g ~ 0. The case when 

f We identify H to its dual; Vs denotes the dual of Vs; Ifs > 1 we have then V s c V c H 
c V ' c V . ' .  



158 J . L .  LIONS Israel J. Math., 

g ~ + oo is also of interest; we shall give some indications on this case in Remark 5 

hereafter. 

The problem of  the behaviour of  uu,g when /~ ~ 0 (g > 0) is considered in 

Section 3 below. 

We now return to the problem (2.3), when n = 3. We need in this case the 

notion of  weak solution of the Bingham inequalities. 

Introduce the space W defined by 

(2.9) w =  vlveL~(O,r; V3/~), -gfe~(o,r;o),v(o)=O 

and to simplify the exposition assume that 

(2.10) u o = O. 

We remark that if u satisfies (2.3) (2.4), then, V v e W we have 

rao ) 
(2.11) [ \  S t '  - u + Iza(u'v'l - u) + b(u,u,v  - u) + gj(v) - gj(u) 

(f, - u ) [  dt >= O. V 
J 

We eliminate in (2.11) the term b(u, u, u) (which is zero for strong solutions) and 

we shall say that u is a weak solution if 

v ) (2.12) Jo L~, Ot " - u + p a ( u , v  - u) + b ( u , u , v )  + g j ( v ) -  

( f ,v  - u)] dt >= O V v ~ W. 

We have 

THEOREM 2.2. Assume that n = 3 , f  is given satisfying (2.5) and (2.10) holds 

true. Then there exists a function u which satisfies 

(2.13) u~L2(O,T;  V) (~L~°(0, T; H), 

(2.14) . d u  eL 2 (0, T;  V3',2) 
0t  

and which satisfies (2.12). 

REM~a~I¢ 2.6. The uniqueness in Theorem 2.2 is an open problem; actually 
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the situation is completely analogous to the one of the usual Navier Stokes 

equations (although the methods of proof are quite different). 

REMARK 2.7. We refer to Duvaut and Lions [6] for the stationary case. 

3. A remark on the problem when the viscosity tends to zero 

Wc consider the case n = 2 and we suppose that [2 is simply connected. Coordi- 

nates are denoted by {x~, x2} or {x,y}. 

Introduce the stream function 0 which is uniquely defined by 

(3.1) d0 ~?0 ax = O x = - U 2 '  ay = O Y = u l  

and 

(3.2) 0 = 0 on F. 

If, as in Section 2, u~ = u2 = 0 on F, then 

(3.3) d0 = 0 on F. 
dn 

In what follows, we shall consider another boundary condition rather than (3.3), 

namely, 

(3.4) A0 = 0 on F. 

REMARK 3.1. A similar change is made, in the case g = 0, by Yudovich [40]. 

We now transform the variational inequality (2.3) in terms of ~b. To every test 

function v we associate ¢ uniquely defined by 

(3.5) C x = - v z ,  ~by=vl, ¢ = 0  o n F .  

We check the following formulas: 

(3.6) Du(v) = Cxzv + ¼ (¢xx - Cry) 2, 

(3.7) a(u, v) = d ( 0 ,  ¢) = (A0, A¢) t 

f j(v) = J(¢)=2fM(¢)*dxdy, 
(3.8) L M(¢) ¢ 2  + ¼ (qS~ x _ ¢,v)z 

(3.9) b(u, u, v) = fl(0, 0, ¢) 

= fa  [0yA0q~ - 0~A0q~'] dx dy, 

i" We set (f, g) = ]fl fgdx dy. 
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(3.10) (u,v) = ao( ~, ~)) = f ,  [¢~).~ + ~bydpy] dxdy, 

O f _  O f  (3.11) (f,v) = (F,¢),  F = ~ : ~ 1" 

Variational inequality (2.3) becomes now 

(3.12) 

Israel J. Math., 

fa {0¢, ~) + o k - ~ -  ~ - ~,~¢(4', ~ - 4') + /~(4 ' ,  ¢, ~ - ¢) 

I + gJ(~b) - g j ( ~ )  > (F, ~b - ~) V ~b 

~such that ¢ = O, A¢ = 0 on F. 

(3.16) 
(3.17) 

(3 .18)  

and (3 .12)  (3.13).  

The new problem we consider is now: to find a function 41 satisfying the boundary 

conditions (3.2) (3.4), the variational inequality (3.12) and the initial conditions: 

(3.13) ~ ] t=o  = 0. t 

REMARK 3.2. Since we have replaced (3.3) by (3.4) we cannot apply Theorem 

3.1 to obtain the existence and uniqueness of a solution ~. We shall prove: 

THEOREM 3.1. Assume that 

(3.14) ~ = ] o,d[ z 

and that f x, fz  are given satisfying 

(3.15) f , ,  f2, F~LZ(Q), Q = ~ x ] 0 ,  T[. 

For # > 0 fixed, there exists a unique function ~ = ~b ~ which satisfies 

~b ~ L°°(O, T; H~(Y~)) N L2(O, T; H2(~)), tt 

A~ E L°°(0, T; L2(~)) r)Lz(0, T; H~o(O)), 

~ ( -  A~) e Lz(O, T; (H2(~) HI(~)) ') ,  

Moreover, as I~ ~ O, there exists a constant C which does not depend on p, such 
that 

(3.19) II ~u IILo~(o.r;u,o(m) + [[ AffUllLoo(o.r; L2(n,, 

0 /1 1 + II (- Ao < c. 

t We take "0" to simplify the exposition. 
~'~" H~(~) denotes the closure of ~' (f~) in H 1 (..) 
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We can then let # tend to zero, to obtain 

THEOREM 3.2. Under the hypothesis of Theorem 3.1, we can extract a 

subsequence, still denoted by ~b ~, of solutions such that when # ~ 0 one has 

(3.20) ~b ~' ~ ~k in L °~ (0, T; H~(f~)) weak-star, 

(3.21) A~b ~ ~ A@ in L °° (0, T; I~(f~)) weak-star, 

(3.22) -8T ( -  A~bU) 8t A~,) in/_.2(0, T;(H2(O) n H~(f~))') weakly 

where ~ is a solution of the variational inequality 

: a o ( a ~  , q~ - ~ ~ + ]~(~,,~k, ~ ) +  gaC(qS)- gj(~b)=> (F,~b - ~) 
\ a t  ] 

(3.23) 
LV c~ such that c~ = 0 on F 

and satisfies 

(3.24) 

PROOF OF THEOREM 3.1. 

~l t=o  = 0 .  

Existence. 

We firstly regularize ,,¢(~b); we define, for e > 0 

(3.25) J~(~b) = 2 fa  M(~b)(t + ~)/2 dx dy 

where M(~b) is defined in (3.8). Then the functional ~b ~J~(~b) is differentiable 

and we have 

(3.26) 

+ + - - 2(1 V)) dxdy. 

We then "approximate"  (3.12) by the nonlinear P.D.E. 

(3.27) ao(~b', ~b) + #d(~, , ,  ~b) + fl(~b~,ff,, ~b) + g(J'~(~,~), ~b) = (F, ~b) 

and 

( 3 . 2 8 )  = o 

(we have denoted 8~b,/dt by ~ ) .  

The solution of (3.27) is constructed by the Galerkin method with a "special 

basis" as in Lions [23] (for the case g = 0). We consider the eigen functions win: 
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(3.29) -- Awm = 2,nW,n, W m = 0 on F 

and  we apply the Gaterkin method with the w,n basis, i.e., we define ~,r, = 

approximate solution of  (3.27) (3.28) in the following manner :  

f ~b,m(t,) e [wl, ".., wm] = space spanned by Wl, "", W,n; 

/ao(~b~.,, 4~) +/~¢(~,~ ,  qS) +/3(~, . ,  ~¢em, (9) -~- g(o~ ~(~t em), 4)) 
(3.30) ] | = (F, q~) V q~ ~ [wl , . . .  , Wm] , 

t .q, ,m(o) = 0 .  

We are now going to obtain estimates on ~'~m which do not  depend on ~ and m 

and we shall see how these estimates depend on p. 

Estimates (I). The first estimates are straightforward; we replace in (3.30) 

~b by ~P,r,; we observe that  fl(~b,~b,~b) = 0 and that  (J',(qS),~b)> 0; we obtain 

therefore:  

d 
(3.31) ½ --~-ao(~',m,~,,.) + x / / zd  (¢ . , . ,0~,)  < (F,O.,.). 

Hence we easily deduce that  t 

(3.32) Ii ,o. ilL ,o T,.o',°,, + 
Estimates (II). Since w,, satisfies (3.29), it follows f rom (3.30) that  

ao(O'm, -- awi ) + I~(O,rn, -- AWj) + fl (O,,n, 0era, -- AWj) 

+ g ( J ' 0 P ~ , . ) , -  Awj) -- ( f ,  - Awj). 

Hence we obtain 

(3.33) ao(~',,., - A~, . )  + / ~ d ( 0 , , . ,  - A~k.,.) + fl (~,,.,O~,., - A~k.,.) 

+ g ( j ' , ( f f , , . ) , -  A~P~r.) = ( t ,  - A~,.,.). 

But we remark that  

A+)= fo (A~)2 _ ~r ~x0 (A(o)2]dxdy 
(3.34) 

= ½ J r  [q~x cos (n, y) - ~ycos(n ,x) ]  (A4~)2dF = 0, 

Since the tangential  derivative of  ~ is zero on F. 

t We obtain simultaneously the existence in (0,T) of a solution of (3.30). 

1"1" The constants C do not depend on e, m,/t. 
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Let us consider for a moment  

LEMMA 3.1. For every smooth funct ion ¢ such that ¢ = A¢  = 0 on F we have 

(3.35) (J ' , (¢) ,  - A¢) __> 0. 

Then (3.33) gives 

(3.36) ½ ~ [ A¢,,, I 2 + It ao(A~p,m, A~,,,) _-< (F, - A~,, , )  t 

Hence we easily obtain tt 

(3.37) II ~'~ I1~=,o,~,"~,o,, + ,/Itll A~'. . l l~ ' ,o. , ' ,° , ,  <= c. 

PROOF OF LEMMA 3.1. We have, setting M ( ¢ ) =  M:  

(3.38) 

where 

(3.39) 

We obtain 

(f.(4,),- A¢) 

= (1 + e) fn M (~- ')/z [ '2~,y( - A¢~y) + ½(¢~ - ¢ . , ) ) (  - A(~b~.,, - ~b~,y))] dxdy 

½(¢~,x ¢.3 (--~-n ¢~,x 
+ (1 + e )x ,  

X = f n  [ (2M(~-')/2~b~y)~bxxy + (2M(~-I)"Z~bxy)Yq~xYY 

+ ½ (M (~- ' /2(4 '~ - ¢~y))~(4,~ - Cyst) 

+ ½ ( M ~ - w 2 ( ¢ ~  _ ¢ . ) ) ~ ( ¢ ~  _ ¢ . p ]  dx dy. 

, I . r l  ~ = r.<,f ~ dx dy. 

t t  wo.so <,e fact ,,a, II + I1"~<o> =<c IAeI  ir ~ = 0 on r .  
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M " - ' / 2  (4~L, + G . )  + ½((G~ - 4 , . ) W  + ½((G. - G,) , )  ~ dx dy 

+ fn(M(~-O/2)x[ 2c~x/a~'xy+{($~x-c/)w)(O~'x- q~")~] dxdy 

+ fn(M"-')/%[24),4),,+½(4)~-G,)(G~-G,),]dxdy 

fo [ ] = M(.- , ) /2  2(4)2  + ~b~r,) + ½ (~b~x - q~w)~) 2 + ½ ((~b~ - q~xx)r)2 dx dy 

+ fn [ (M(*-O/2)~'M~'+ (M("-')/2)'M'] dxdy 

= e__2 fn M"-3)/z(M~+ M2)dx dy+ fn M(~-3)/2Y dxdy 

where 

Y =  

I f  we set 

we check that  

[ 2 ] M 2($~,r + 4~,,) + ½((~xx - 4),,)~) 2 + ½ ((~bxx - ~w), 2 

- ½ [ M 2 + M ~ ] .  

~)xx - -  ~ y y  = t7 

Y = ½ (qSxy cr~ - 4)xxyO') 2 - I -½(q~xyO 'y -  (])xyyO') 2 

hence Y > 0, so that  X > 0 and therefore (3.38) gives 

(3.40) (~'~(q~), - aq~) > - (1 + e) (r M(*-z)/2Z dr  

where 

Z = 2q~x, O a 

0 [4,2y_ Gxq~. + ¼(A$)2]. 
On 

But since Aq~ = 0 on F, it follows that  0/On (A~b) 2 = 0 on F so that  

Z = ~ q~, - qS~x~b, on r .  
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But one easily checks that since 49 = 0, A49 = 0 on F; then on each part o fF  = 0f~, 
f~ = ]o ,d[  2, one has z = 0; hence (3.40) gives (3.35). 

Estimate (III). We now show that 

(3.41) II 0 ~ - ( - A ~ m )  r2to,r;(u2(mn~'om),,)< C. 

It follows from (3.30) that 

(3.42) ao(~0',,,,49 ) = (F, 49) - #d0p,m,49 ) - fl(~k~,,,~p~,,,49) 

- g ( J '~ (¢~m) ,  49) 

and it will suffice to show that each term in the right hand side of (3.42) is 

11 49 [I.2<o,x (an Lz(O, T) function). 

This is obvious for the term (F, 49). We observe next that 

/~i~'(0,m, 49) l z ~ l A < . l  I/,491; 
hence the result follows by virtue of (3.37). We then estimate 

0 , 049 

--< c la<ml 2 114911-~<o~ z (by virtue of (3.37)) 

= c[149 I1.=,o,. 
which gives the desired estimate for/7 (¢~,,, ~m, 49). Finally we observe that 

< c j a  M(¢)*/z[49 z, + ¼(49~ - 49yy)ZJidxdy 1(/5(~),49)1 

Hence the result follows, again using (3.37). This completes the proof of (3.41). 

We now pass to the limit in m and in 5. By virtue of the preceding estimates, 

we can extract a subsequence, still denoted by 0~,~, such that 

( '0,,, ~ 0 in L®(0, T; H2(f0 n i l e ( n ) )  weak star, 
/ 

(3.43) /Afro,. -+ A¢ in LZ(O, T; H~o(f~)) weakly, 

L-~-t ( - ]  A~,~,~)+-~-t ( -  A~b)in L=(0, T; (H2(D)c3 H~(f~))')weakly. 
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ao(~'em, ¢ --  ~em) -b I~.~¢(~/em,¢ - -  ~]em) "Jr fl  (~lern,~lem,(9) 

(3.44) + gJe(¢) - gJe(~em) - (F, q5 - ~e,,,) 

= g [ , / , ( ¢ )  - ] , ( , / , , , , , )  - ( j , ( ¢ , , , , , ) ,  ¢ - ¢,°,, ,)] > o 

(using the convexity of ¢ ~ Je(¢))- 

Therefore, 

f~ [(~-t (-A~m),¢ ) + #d(¢~m,¢) + p@~,q/,~,¢) 

+ gJ,(¢) - (f, ¢ - ~'~)/ dt 
, , J  

fo'[ (3.45) => ao(~b'e,,, ~/~m) +/'/~¢(0em,~/em) + gJC2(Oern dt 

= ½ao(O~m(T),O,m(r)) +l~ d(O~m,O,m) dt 

~T 1 

+ g | J.(O.m)at. 
,I o 

We use a compactness argument (as in Lions [23], Chap 1, Sec. 6.9) to prove that 

~ Z(~,m,g,,m,¢)dt-* f ; #(¢,g', ¢)dt;  

the right hand side of (3.45) is lower semi-continuous, so that we obtain in the limit 

r 0 
fo  [ ( - ~ - ( - A 0 ) , ¢ - ~ )  + / ~ d ( 0 , ¢ - ~ O ) + f l ( O , ¢ , ¢ ) + g J ( ¢ ) - g J ( ¢ ) ]  dt 

(3.46) 1 ~T 
= | ( F , ¢ - ~ b )  dr. 

,) o 

From this, one only obtains that ff satisfies (3.23); this completes the proof of 

the "existence part" in Theorem 3.1. 

PROOF OF THEOREM 3.1. Uniqueness. 

Let ~k and ¢* be two solutions of(3.12) (3.13) which satisfy (3.16) (3.17) (3.18). 

Taking ¢ = @* (resp. ¢ = ¢) in the inequality for ~ (resp @*) and setting 0 = @ - ~* 

we obtain, after adding the results: 

- a o ( O ' , O )  - ~,~(0, 0) - / ~  (~0, 4,, 0) +/~(~*,~ ,* ,0)  -> 0. 

Hence 
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~ II o(t)ll~ + ~1 A 0 ( t ) 1 2  < - fl(~b,0, 0) 

and we deduce that  0 = 0 as in the proof  of Theorem 6.10 of  Lions [23], Chap. 1. 

PROOF OF THEOREM 3.2. We denote by ~ the solutions obtained in Theorem 

3.1. By virtue of the estimates (3.19), we can extract a subsequence, still denoted 

by ~b ~, such that one has (3.20) (3.21) (3.22). We also notice that (3.37) implies that 

(3.47) ~/tt A~ ~ remains in a bounded set of L2(0, T; H~(~I)). 

Since - A  is an isomorphism from Hz(F0 n H~(~) into L2(~), it follows by 

transposition that it is also an isomorphism from L2(~) into (H2(~) ¢3 HI(~))  ' so 

that  (3.22) is equivalent to 

a~ ~ a~ in L2(0, T; L2(gt)) weakly. (3.48) •--Y ~ ~t 

I t  follows from (3.12) that if we choose 4) = 4) (t) to be a smooth function satisfying 

4) = 0 on F, we have 

(3.49) f /  [ . o ( ~ ,  4) - v,.) + ~,d(~,., 4) - ~,.) + fl(~.,~,.. 4)) 
+ g J(4)) - gv¢(~") - (F, 4) - ~bu)] d t >  O. 

By virtue of (3.47), [r#d(~b~',4) - ~b ~') dt--* 0 and by (3.21), 

fo f: lower lim. J(~b~)dt  >= ] ( tp )d t .  Using (3.21) (3.22) 

we see that  

fo r Off~' l,) r a ((9~/ fo r (__~_ ) 

so that  (3.49) implies 

(3.50) ao ,4) - 0 + f l ( O , O , 4 ) ) + g J ( 4 ) ) - g ~ ( O ) - ( F , 4 ) - O )  dt>___O 

provided we check that  

(3.51) forfl(0~,0~,4))dt-~ forfl(O,O,4))dt. 
We have to verify that  

(3.52) fe~,~a~,"¢~dQ--, fe%@ 4)~ dQ. 
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We can take ~b as smooth as we please (by a density argument), so that 

A~b ~ ~bx ~ A$ qS~ in, say, L2(Q) weakly. By (3.21) and (3.48), we have 

in/_.2(0, T; HI(~))) weakly, 

in/_.2(0, T; H~(f~)) weakly. 

Ot Ot 

Hence, by using a compactness result (cf. Lions [24]), it follows that 

¢~ ~ Cy in L2(Q) strongly 

so that (3.52) and (3.51) follow. Thus (3.50) is proved and (3.23) follows by a 

standard argument. 

REMARK 3.3. The uniqueness in Theorem 3.2 is an open problem, for g > 0. 

In case g = 0, uniqueness is known. Cf. Yudovich [40], Lions [23]. 

REMARK 3.4. It would be interesting to extend to the present situation results 

obtained for the case g = 0 by D. G. Ebin and J. Marsden [9], T. Kato [17] and 

H. S. G. Swann [38]. We believe the results to be valid for the case g > 0 but the 

" j - terms" lead to serious technical difficulties. 

4. Heat  transfer in a Bingham fluid 

Let us consider now, following Duvaut and Lions [8], a situation where the 

viscosity p depends on the temperature 0 of the fluid. 

Let 2 --* #(2) be a continuous function defined on co, satisfying 

0 </~0 < #(2) </~1 < ~ V2 ~ R. 

a(O; u,v) = 2 fn #(O)Dij(u)Dij(v)dxt 

(4.1) 

We set now 

(4.2) 

and we introduce 

(4.3) F(O, u) = 2(2/z(0) Dn(u) + g(Dn(u))~). 

Then the speed of the flow u and the temperature 0 of the fluid are shown to 

satisfy to 

1" In  ca se / t  (0) = #,  a (0; u, v) = / t  a (u, v) with the nota t ions  of  Sections 2 and  3. 
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r~ au v- -u '~  (4.4) | ~ , 3 t '  ] + a ( O ; v - u ) + b ( u , u , v - u ) + g j ( v ) - g j ( v ) > ( f , v - u )  

L VveV,  

aO kAO = c F(O, u) + f ,  k, c > O, (4.5) d-~-- - 

where f is given in f~ × ]0, T[, with the boundary conditions 

(4.6) u = 0  o n F t  

60 
(4.7) k ~ + qO = 0 on F, q > 0 

and with the initial conditions 

(4.8) u(x,O) = Uo(X), O(x,O) = Oo(x),(Uo, Oo given). 

The following theorem is proved in [8]: 

THEOREM 4.1. We assume that the space dimension n = 2, and that 

(4.9) f ~  L2(0, T; V'), f~. LI(Q), Q = D x ]0, T[, 

(4.10) Uo s H ,  0o eU(f~). 

Then there exists u,O, a solution of (4.5)...(4.8) such that 

t3u 2 
(4.11) u~L2(O,T; V), ---~t-eL (O,T; V'), 

(4.12) O~L~(Q), where 1 < fl < 3/2. 

REMARK 4.1. The solution 0 in L ~ (Q) of (4.5) (4.7) (4.8) is meant in a weak 
sense, after integration by parts. 

REMARK 4.2. The uniqueness in Theorem 4.1 is an open question. If  n = 3, the 

existence appears also to be an open question. 

5. Remarks and problems 

5.1 The case g ~  + c¢. Let u e be the solution given by Theorem 2.1, where/~ 

is fixed > 0. Let us suppose that 

(5.1) Uo = 0 

and that 

(5.2) f ~  L~(0, T; H). 

t This condition is satisfied when u (t) ~ V. 
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Then, using in particular, an inequality of L. Nirenberg (private communication) 

extended by M. J. Strauss [37], one shows (cf. [6], Chap. 6, Se:. 5) that 

(5.3) ug = 0 for g > go. 

We call "rigid domain" the region of the flow where 

(5.4) Dfj(Ue) = 0 V i,j. 

It seems natural that this rigid domain increases with g; this conjecture, made in 

!'6], is confirmed by numerical experiments (cf. M. Fortin [12], D. B6gis [2]). 

5.2. Multipliers. One can state the variational inequalities met in this paper 

in terms of equalities using Lagrange multipliers (not uniquely defined). 

We refer to Duvaut and Lions [6] [8] for these equalities. 

5.3. Regularity. In problems of variational inequalities, there is, in general, 

a "regularity yield" (counter example of Shamir [34], Br6zis and Stampacchia 

[5] and Br6zis [4]). Is it possible to prove regularity theorems analogous to those 

of Br6zis [4] for the variational inequality "without b term", i.e., 

(5.5) - - ~ - , v - u  + p a ( u , v - - u ) + g j ( v ) - - g j ( u ) > ( f , v - u )  V v ~ V ?  

It is very likely that one cannot extend all results known in the case g = 0, such as 

those of Serrin [33]. 

5.4. Let us suppose that the right hand sidefand the initial data Uo are random 

functions in Theorem 2.2. (i.e., when space dimension equals 3). Then R. Temam 

[39] has proved that one can find a measurable family of solutions. A general 

problem which arises in this context is then: Is it possible to estimate the proba- 

bility of having uniqueness? 

5.5. For the extension of the theory of C. Foias and G. Prodi [10], Ell] 

(which is established for the case g=O) to the case g > 0, we refer to Pop Ciora- 

nescu [31]. 

5.6. It would be interesting to extend to the Bingham flows the results of 

stability known for the Navier Stokes equations (cf. G. Iooss [15], O. A. 

Ladyzenskaya [19] and D. Sattinger [32]). 

5.7. One can extend to the case g > 0 some of the results of Simonenko [35] 

[36] relative to the case "g = 0". 

5.8. For the study of almost periodic solutions of Bingham's variational 
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inequalities, we refer to Biroli [3-] where some extensions o f  results o f  Amerio-  

Prouse [1] are given. 

5.9. One meets  (G. Duvaut ,  private communica t ion ) f ree  boundary problems 

for Bingham's  fluids; they seem to lead to open  problems. 

5.10. For  Bingham's  flows in non-cylindrical  domains,  we refer to B. Margolis 

[28.] who gives extensions o f  results for Navier  Stokes equations in non-cylindrical 

domains  obta ined in H. Fuji ta  and N. Sauer [13],  Lions [25],  H. Mor imoto  [30] 

(where one studies the existence o f  periodical solutions). 

5.11. Other  models,  in t roduced in the case g = 0 by Ladyzenskaya [20],  

S. Kaniel  [16],  Lions [26],  are solved tbr the case g > 0 in B. Margolis [29]. 
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